If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+14x-2=0
a = 12; b = 14; c = -2;
Δ = b2-4ac
Δ = 142-4·12·(-2)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{73}}{2*12}=\frac{-14-2\sqrt{73}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{73}}{2*12}=\frac{-14+2\sqrt{73}}{24} $
| 2=56-6y | | 64=5x-24+3x | | 0=12x^2+14x-2 | | 36x4-85x2+49=0 | | 3(2r-1)=9(2r-5 | | 2(2x-3)+6x25=0 | | X+Y+3x=42 | | 9-25x∧2=0 | | -7(6r-3)=-231 | | 1/4+2x=1/12 | | |-x+18|=7 | | t=−16t2+30t+78 | | -8=4(6-a) | | |-x+18|=17 | | x=4(3-2)+6÷8 | | A=8/5(h-34) | | 9-25x²=0 | | 2/5(15)+2/3x(15)=4/5(15)+3x(15) | | -2(6x-2)=88 | | x+3x-1+4x-2=81 | | 7z+18=6z+15 | | 1/2+5h=7h | | 4(3x+8)-2=3(x-1)+6 | | 2/3x+3/4x=7/8 | | 17(4.3333+y)=43 | | 21/2x−3/4(2x+5)=3/8 | | 1=17-1y | | -440=8(1-8x) | | 0.7x-0.11=5-0.03 | | s+K+Y+L+E+R+B+U+R+K+E+T+T=2 | | 17(5+y)=43 | | 1/3x+6/x=10 |